Salinity constraints on subsurface archaeal diversity and methanogenesis in sedimentary rock rich in organic matter.

نویسندگان

  • Patricia J Waldron
  • Steven T Petsch
  • Anna M Martini
  • Klaus Nüsslein
چکیده

The diversity of microorganisms active within sedimentary rocks provides important controls on the geochemistry of many subsurface environments. In particular, biodegradation of organic matter in sedimentary rocks contributes to the biogeochemical cycling of carbon and other elements and strongly impacts the recovery and quality of fossil fuel resources. In this study, archaeal diversity was investigated along a salinity gradient spanning 8 to 3,490 mM Cl(-) in a subsurface shale rich in CH(4) derived from biodegradation of sedimentary hydrocarbons. Shale pore waters collected from wells in the main CH(4)-producing zone lacked electron acceptors such as O(2), NO(3)(-), Fe(3+), or SO(4)(2-). Acetate was detected only in high-salinity waters, suggesting that acetoclastic methanogenesis is inhibited at Cl(-) concentrations above approximately 1,000 mM. Most-probable-number series revealed differences in methanogen substrate utilization (acetate, trimethylamine, or H(2)/CO(2)) associated with chlorinity. The greatest methane production in enrichment cultures was observed for incubations with salinity at or close to the native pore water salinity of the inoculum. Restriction fragment length polymorphism analyses of archaeal 16S rRNA genes from seven wells indicated that there were links between archaeal communities and pore water salinity. Archaeal clone libraries constructed from sequences from 16S rRNA genes isolated from two wells revealed phylotypes similar to a halophilic methylotrophic Methanohalophilus species and a hydrogenotrophic Methanoplanus species at high salinity and a single phylotype closely related to Methanocorpusculum bavaricum at low salinity. These results show that several distinct communities of methanogens persist in this subsurface, CH(4)-producing environment and that each community is adapted to particular conditions of salinity and preferential substrate use and each community induces distinct geochemical signatures in shale formation waters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microbial Communities and Organic Matter Composition in Surface and Subsurface Sediments of the Helgoland Mud Area, North Sea

The role of microorganisms in the cycling of sedimentary organic carbon is a crucial one. To better understand relationships between molecular composition of a potentially bioavailable fraction of organic matter and microbial populations, bacterial and archaeal communities were characterized using pyrosequencing-based 16S rRNA gene analysis in surface (top 30 cm) and subsurface/deeper sediments...

متن کامل

Microbial methane formation in deep aquifers of a coal-bearing sedimentary basin, Germany

Coal-bearing sediments are major reservoirs of organic matter potentially available for methanogenic subsurface microbial communities. In this study the specific microbial community inside lignite-bearing sedimentary basin in Germany and its contribution to methanogenic hydrocarbon degradation processes was investigated. The stable isotope signature of methane measured in groundwater and coal-r...

متن کامل

Shifts in archaeal communities associated with lithological and geochemical variations in subsurface Cretaceous rock.

Subsurface microbial community structure in relation to geochemical gradients and lithology was investigated using a combination of molecular phylogenetic and geochemical analyses. Discreet groundwater and substratum samples were obtained from depths ranging from 182 to 190 m beneath the surface at approximately 10-cm intervals using a multilevel sampler (MLS) that straddled Cretaceous shale an...

متن کامل

A new approach to interpreting relationship between Rock-Eval S2 and TOC data for source rock evaluation based on regression analyses

To evaluate the relationship between total organic carbon (TOC) and Rock-Eval S2 (petroleum potential) of petroleum source rocks, atotal of 180 outcrop samples from the black organic matter–rich facies of Mesozoic strata from a locality of southwest of Iran wereinvestigated using Rock-Eval VI pyrolysis and Leco Carbon Analyzer. The linear regression is applied to determine the correlationbetwee...

متن کامل

کانی‌شناسی، شیمی کانه‌ها و بررسی سیال‌های درگیر در کانسار سرب و روی گوشفیل، ناحیه معدنی ایرانکوه، جنوب غرب اصفهان

Gushfil deposit is located SW Isfahan within Malayer-Isfahan Metallogenic Zone. Mineralization occurs at contact of Jurassic shale and Cretaceous dolomite as epigenetic with structural control. Paragenetic minerals are sphalerite, galena, and pyrite associated with dolomite, quartz, organic matter, and minor barite as gangue minerals. These minerals show berrecia, veinlets, open space filling, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 73 13  شماره 

صفحات  -

تاریخ انتشار 2007